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J. Phys.: Condens Matter 5 (1993) 103%1054. Printed in the UK 

The phase transition for the aggregation model in the 
effective-medium approach 

M G Rudavets 
Laboratoly of Mathematical Physics, Institute of chemical Physics, Russian Academy of 
Sciences, Chemogolovka, 142432, Moscow Region, Russia 

ReEeived 1 June 1992 in final form 7 November 1992 

Abstract. The one-particle model on a lattice is proposed to account for the formation 
of a spanning cluster in the aggregation proms. In the framework of that model. 
effective-medium theory is described W Calculate the effective diffusion rate, 77, and 
effeclive adsorption rate, 5, within the aggregation front. Asharp increase in 5 is found 
at a very small wncentration of adsorbed particles if the elementary rate of attachment, 
r. measured in units of the elementary diffusion rate, is a b e  a critical value r' E 2 
This peculiarity in behaviour of V signals the o c c u m c e  of rare and ramified structure. 
The model can also be applied to explore the concentration dependence of absorption 
rate. A unit rate of attachment, r, corresponds to instantaneous local absorption. Then, 
the Smoluchwski mul l  is reprcduced for a small wnmntration of traps. Values r < 1 
acmunt for the reaction-limited mode. The mnnntralion dependences of the rates V 
and 77 are found for any value r in the steady-state regime. 

I. Introduction 

In the conventional theory of diffusion-limited processes [I], diffusion-limited 
aggregation (DLA) is considered to be the result of the free diffusion of particles, 
say A, from a spatially uniform solution to a flat interface, solution/solid deposit 
of B, at which a constant concenaation n, = 0 is maintained, followed by instant 
attachment of diffused particles to the interface. Once a distribution n, is found, 
the motion of the interface, ob( t ) ,  can be determined from the conservation law for 
particle number in the conversion process A -+ B, asserting that the flows of particles 
coming from the liquid phase to the solid phase per unit time are equal, i.e. 

n; dob(t)/dt = daVn,(ob, 1 )  

where d, is the diffusion coefficient of A particles and ng is the effective concentration 
of the deposit 

A new situation arises if initially the system contains no A particles and some 
source generates a small flow of A particles to the substrate surface, where deposition 
and the growth of the aggregate take place. Such processes are currently investigated 
with stochastic rules; the fractal structure of the adsorbed particles is revealed here, 
showing that the interface is far from being flat [2,3]. Its roughness, <, is proportional 
to the linear size of the aggregate 1, Le. < N I, which is itself connected with the total 
number of adsorbed particles Nb by the power-law relationship 1 N N:llDf, where Df 
is the fractal dimension [2,3]. 

09SM984/m/081D39+16$7.S0 @I 1993 IOP Publishing Lid 1039 



1040 M G Rudavets 

An objective of this paper is to explore transport coefficients within the adsorption 
front by considering its structure as an effective medium, disregarding large-scale 
fluctuation effects. At first sight, the shielding effect of inner regions of deposited film 
appears when the effective diffusion terminates. Indeed, if we substitute da(i )  = 0 ,  
into the expression for the distribution of A particles 

n,(+, 1 )  = n,0erfc{+/[4d,(z)tjl/2} (1) 

which possesses the required properties (namely, at t = 0 concentration n.(i,t = 
0) = 0 overall in the volume, and n(0, t) = nt at the source placed at z = 0). then 
the concentration at point I will satisfy the condition n,(z,t) = 0 characteristic for 
the interface. However, this reason for shielding appears not to be the case. From 
[2,3], the aggregate’s concentration vanishes as nb r ZDi-D -+ 0 at 1 -+ CO, where D 
is the Euclidean dimension. At such small concentrations of ill-conducting places, the 
effective diffusion coefficient practically coincides with the diffusion coefficient in a 
free system. Thus, the formation of the B structure that totally screens its own inner 
regions from incoming flow implies the omrrence of a large adsorption coefficient 
of A particles, while their penetration is ideal. 

In this paper, we present a model that provides a sharp increase in effective 
adsorption rate at a very small concentration of adsorbent structure of B kind. These 
properties are common for ramified and rare clusters constructed with stochastic rules 
[2,3]. The many-body Liouvillean of the system, L,  is introduced in section 2 Since 
it is futile to expect its exact solution, an approximate Liouvillean (alloy Liouvillean, 
due to terminology in the Hubbard model) and, corresponding to it, oneparticle 
kinetics equations with random rates are derived In section 3, the one-particle 
model is extended to a more general one, permitting one to explain the process of 
deposition as critical phenomena. The effective-medium theory applied to calculations 
of adsorption and diffusion rates in the deposition front is described in section 4. Thiis 
is followed by analytical results for the low-concentration case, nb -+ 0; in particular, 
the Smoluchowski rate constant is reproduced here. For arbitrary concentration nb, 
solution of the self-consistent equations of the effective-medium theory have been 
found numerically, including the critical concentration of the effective structure n; to 
be discussed in section 5. Fmally, the conclusions are summarized in section 6. 

2. Liouvillean of the diKuslon-limited aggregation 

The many-body process of aggregation of A particles on a lattice is described with 
the Liouvillean L [4], consisting of diffusion, L,, and reaction, L,, parts 
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Here ai, (af), b j ,  (bf ) are Pauli operators for A and B particles, respectively, with 
properties 

[ a j , a f ] + = l  U * = O  3 (af)’=O [a i ,  a;] = 0 for i # j 

and AbJ is the occupation number operator for particles of B in the j th  cell. Here L, 
corresponds to hops of an A particle from the j th  cell to a neighbouring cell ( j  + e) 
containing no B particle, ie. nb,j+e = 9 while L,  describes the destruction of an A 
particle in the jth cell with rate d ,  and the simultaneous creation in im place of a 
particle of B when nb,j+c = 1. This term implies an instantaneous local annihilation 
reaction, so the net rate of transition is controlled by the rate of h o p  of reactant 
A to the adjacent cell occupied by a B particle. The scheme of the reaction can be 
followed by using two channels of the transitions in Fock vector space {laT), Ib,)) 

(34 

(3) 

4 
l ~ , j ) l b , j f e ) ~ I b , j ) I b , j t e )  

4 l ~ , ~ ) l O , ~ + ~ ) ~ l O , ~ ) l ~ , ~ + e ) .  
’Ib get around the many-body problem, we take advantage of the Hubbard model 
analogy [S,q, and describe the original problem approximately with the help of a 
linearized Liouvillean, in which the occupation number operators fib,j are replaced 
with ‘c-numbers’ Ob,j (= 0, 1). As a result of the simplification, oneparticle 
probabilities (volume fractions) n p , j ( l )  in the total state vector 

solve a linear kinetic equation 

atna,j = da6b,j %, j+e  - dana>j  6b, j+e - dana,j c e b 8 j + e  (5.) 

atnb,j = danaJ eb.j+e (56) 

e e 

c 

where 6hj = 1 - O b , j .  The first two terms in equation (Sa) correspond to the Lorena 
model for affusion on a restricted lattice [I, and the third term describes reaction 
(3a). The step functions 6b,j and Ob,j allow us to distinguish the channels of diffusion 
and reaction. In the following, the BbJ function is supposed to be determined 
statistically, with distribution function f being instantaneously adjusted to the elapsed 
effective concentration of the solid phase of B, %,i = (nb , i ( t ) ) ,  i.e. 

f ( s b , i ? t )  = 4 , i 6 ( O b , i  - l) t ( l  - c b , i ) 6 ( o b , i ) .  (6) 

Given quantity cb,+, equation (%) yields a self-contained description of the Idnetics. 
As stressed above, equation (Sa) is equivalent to an equation describing instant local 
absorption of A particles, 

atnad = d,Anaf - Un,,jOb,j where U + W. (7 
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Kis is due to the fact that both equations describe the free diffusion on a part of 
the lattice containing no B particles (there = 0), and describe the absence of A 
particles on cells occupied with B particles = 1). Thus, equation (7) as well as 
equation (Sa) supplemented with statistics (6) is not capable of describing interface 
motion, as its location r ( t )  is at motionless cells with n,,,(t) = 0. The message of 
this exercise is that, although the many-body Liouvillean (2) amunts  for the effect 
of displacement of individual particles of B in elementary processes of diffusion and 
reaction, its linearized approximation based on one-particle equations (5) and (6) 
loses that important property. It is evident rather generally that, to arrive at any 
useful result, some sort of linearization for L should be implemented. In the next 
section, we shall show that it is possible to adapt the Liowillean (2) by increasing the 
reaction term L, by a factor of r without changing L,. The linearized approximation 
of the new Liouvillean accounts for the effect of formation of the new structure. 

3. One-particle model of aggregation 

lb alleviate the problem, we drop out index a in equation (Sa) and rewrite it in 
somewhat more general form by introducing a factor r for the rate of the reaction, 

with all rates measured in units of d,. The relation satisfied by diffusion rates U,,?, 

between nearest-neighbour cells T and r' can be written as ur,?, = 6b,,,6b,r. It is 
consistent with equation (Sa) since an entrance of A particles to the rth cell occurs 
only from those adjacent cells T' in which the B particles are absent, Le. nb,?, = 0, 
and hence &, = 1. The expression for mqr, is also consistent with separation of 
the total process into two different pathways: reaction and diffusion. For an available 
bond state, u ~ , ~ ,  = 1, the cell r into which an A particle hops does not contain the 
B particle, i.e. Sb,? = 1, and for a broken bond, where u? ,~ ,  = 0, we have 4,, = 0. 

The value of parameter r is very important for further considerations. By 
increasing I', we go from one scenario of the kinetics to the other. Thus r = 0 
is responsible for diffusion without adsorption, when the particles of A are reflected 
from ill-conducting regions of the B phase. Values 0 < r < 1 model a local reaction- 
limited absorption. In this case, the two-cell recombination rate can be represented 
in the form r = U/( 1 + U), where U is the local (one-cell) rate of the reaction 
measured in units d,. The model with r = 1 describes instantaneous local absorption, 
ie. U = CO. Renormalization of the local rate has been performed in this case and 
non-local diffusion with rate d, governs the kinetics of the destruction of the A 
particles (see equation (5a)). Values r > 1 model sticking of an A particle to a 
B cluster if the particle of A is at the border of the cluster. It is worth calling 
attention to the analogy with similar formulae that have been derived for r < 1 01 
U < CO. In the latter case, the non-locality in the reaction term is simply caused 
by the mathematical fact of renormalization of the large rate U, the effective rate 
of absorption being diffusion-controlled. The former case, ie, > 1, imitates the 
growth process, providing a new physical situation. For r not deviating by much from 
unily, the sticking process is slow, while r B 1 models instant sticking. Actually, for 
r > 1, it is possible to cany out renormalization in equation (8) and to obtain a 
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reaction rate with larger non-locality. However, having in mind an application of the 
effectivemedium theoly with the smallest cluster size, the present form, Le. equation 
(8), h supposed to be more favourable than the renormalized one. We close this 
section by simply noting that equation (8) is deduced from a linear approximation to 
the Liouvillean (2) with reaction term rL, .  

4. ltansport coefficients in an effective medium 

4.1. Introduction 

The failure of the exact solution to equation (8) with random rate coefficients gives 
rise to the necessity to get an approximate solution with coefficients averaged over 
some region of the lattice. 'lb this end, the effectivemedium theory (EMT) for 
calculating the diffusion rates on a lattice with random bonds or sites can be employed 
[6,8]. The E m  is !mom to be rather representative if a 30 x 30 x 30 lattice is used. 
Numerically calculated effective diffusion on that small lattice appears in qualitative 
agreement with the analytical result for effective mobility for an infinite lattice. This 
fact is of importance for application of the Ehfr to a spatially heterogeneous medium 
as it indicates that diffusion coefficients calculated analytically for the infinite lattice 
can be attributed to local values for diffusion rates if a small lattice consisting of 
about loo0 cells is thought of as a unit of volume. 

Wtth respect to transport in a stochastic medium, of much literature published, 
[7-101 are noteworthy. Comparison of the diagrammatic analysis of diffusion rate 
in the Lorentz model without reaction 17, numerical simulations and effective- 
medium results [%IO] show a good agreement of these tools for description of 
the effective properties at high concentrations of the components. As the EMT 
has more transparent form than the diagrammatic treatment, it suggests that it is 
reasonable to apply the cluster scheme of the EMT to the present model, which 
incorporates chemical reactions as well. Moreover, relying on the E m ,  we shall 
uphold the phenomenological p i n t  of view, rather than the mathematically more 
rigorous formalism of the cluster 7'-matrix [12]. 

4.2. Dyson Bpuatwn for the model 
In the Green function (GF) formalism [I31 in the Laplace transform domain, the GF 
P, corresponding to equation (8) for an A particle starting out from arbitrary cell R 
reads 

u P , = ~ , , R  + C u r , r + e ( P r + c  - p , ) - r p , C ~ , + ,  (9) 
E c 

where (?++e) is adjacent to cell T and the explicit dependence of P, on R is dropped, 
leaving only the dependence on r, i.e. P, I Pr,R. The OF with coefficients a and B 
for the effective lattice fulfils the equation 

l k i n g  F$ as an undisturbed solution to equation (9), we can write the won equation 
in the form 

p, = et Gu,,, {AS,$.4P+ - P,) - E d J , }  (11) 
(a,.') 
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where e,, is the GF for transition from the sth to the rth cell on the effective 
lattice and (s, r') refer to neighbouring cells, r' = s + e. Fbr convenience, we use. 
throughout the paper two different notations for the GF on the effective lattice, i.e. e and with the relation e = e,R holding. The quantities Ar,r, and (,. 
measure fluctuations of diffusion rate of the bond ( 7 4 )  and adsorption rate on cell 
r relative to its effective values, respectively, i.e. 

Ib state self-consistent equations for B and T, we choose the ef€ective GF e 
as satisfying Bruggeman's condition e = (P,) [14], where the averaging is carried 
out over statistics (6). It follows that both equations (9) and (10) are equivalent if 
bilinear combinations in equation (9) are represented, on average, as 

In other words, the fluctuating variables are considered as if they were statistically 
independent. In terms of the fluctuations E, and A,,,, equations (13) become 

(A7,rdprr - P,)) = 0 (14-4 

(PA,+.) = 0. (146) 

4.3. Solution of the Dyson equation on a $nile cluster 

An exact calculation of equation (11) is just a bit more dif6cult than the solution of 
the corresponding equation (9). A decisive benefit of the EM'C is in choosing a cluster 
embedded into the effective lattice [lo]. The solution to equation (11) simplifies when 
considering a symmetric coherent cluster with side twice the side length of the lattice 
(see figure 1). AI1 bonds in that cluster are correlated, having the same diffusion 
rate U. More precisely, if the central cell has 6,+ = 0, then all six bonds with 
common cell i have ai,j = 0. Spherically symmetric and homogeneous inclusion in 
the continuum effective medium 1151 can be thought of as a continuum analogue of 
the corresponding lattice. Except for the mentioned correlations between bonds that 
are caused solely by geometric character, there b correlation between the processes 
of destruction and hops of A panicles within the cluster. 'Mi correlation has the 
same origin as in the model (Sa), permitting the particle to follow one of the two 
channels, either diffusion or adsorption depending on the value of e,. As a result, 
the fluctuations in E, and take the form: (i) A,,, = A, = U -F, if both r 
and r' E C (i) A,,,, = 0, if at least P or r' $ @; besides U = 1 - e,. Analogously, 
(i) E, I tu = re, - 5, if r E @; (iv) [,, = 0, if T $ @. 

'Ib find the probability for formation of the coherent cluster C, we make use of 
its definition: aU cells in the cluster have no B particles if at least two cells of any 
six bonds (*E,) (where Q = 1,2,. . . ,6) contain no B particles. That state occurs 
randomly with probability p2, where p = 1 - cb, and then U = 1. The probability 
1 - p 2  corresponds to a Nled cluster with B particles, and hence U = 0. 
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Plgure L Symmetric cluster, C, in a threedimensional 
simple rubic lattice AU b n d s  (04;) d the duster have 
the same diffusion nle of A particles, 0, either 1 or 0. In 
the brmer case, the men cells are empty; and in the latter 
os.?, they are filled with B panicles. 

.OnmnhYOn 

Fiiurr 2 The diffusion rale of A panicles, 8, versus the mncentration of solid phase 
ai €3 for different values of the rate of attxhment l? (1) 0, (2) 0.1, (3) 1, (4) 10, (5) 
100, (6) 1ooO. The runre with r = 0 mrrerponds to the threedimensional result of [lo1 
for the percolation problem. 

Having defined values E, and A , , ,  on the lattice, equation (11) simplifies to 

Owing to equation (U) the GF P, for every cell P is expressed via the GF of the 
cluster, i.e. Pu and P, I Pe*, where a = 1 , .  . . ,6. The e,, I e,e+ for the simple 
cubic lattice fulfil the equality Go,,, = cue,,. The symmetry inherent in equation (15) 
allows it to be solved by putting into equation (15) r = 0 and r = e@, 0 = 1,. . . ,6. 
Fmt, we introduce shorthand notations for combinations of GF 

= 1 + 6Eu@w + 6A"(c0, - 41) (IQ) 
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6 

gu = c e,,.,. 
e=l 

These variables arise as factors in front of GF P, in equation (15). Then, the GF for 
the central cell, r = 0, reads 

6 

P, = m;'(e+ mZS) s = P,. (17) 
,=l 

lb determine the value of S, one needs to find g". Wing  to the symmetry of the 
GF, go can be represented as 

*=l 

Then, by putting into equation (10) r = 0 and R = e l ,  we get in explicit form 

so go satisfies the relationship 
Ego = (w + 6T + 65)G&. 

For a neighbouring cell, we have from equation (15) 

pp = 9 - mlPu + CKG1- $,,)A,- EOG,,IP, 
6 

P=1,  ..., 6 
*.=I 

(19) 
and it follows that 

6 

S = m;'(SU -6mlPu) So = e. (20) 
e=l 

Overall in equations (16)-(ZO), the symmetry of GF on a simple cubic lattice 
has been used. Equations (17) and (20) have a solution expressed via the GF of the 
effective lattice 

PO = M-'(m3# + m,Su) 

S = M-'(mOSo -6mlPl) (21) 

M = mum,+6mlm2. (22) 

TS0=(w+6T+6T)e .  (23) 

where 

Moreover, as the values So and e belong to the effective lattice, they are related to 
each other by equation (IO) (By putting into it r = 0 and R # 0), namely 
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4.4. Explicit form for lhe self-consisten! equafion for B 
Having obtained the cells' GF via effective ones, we then go on to derive an explicit 
form for the self-consistent equations. 'lb do this requires an elimination of Pu from 
equations (17) and (19). with the result 

6 

Pp = A): t hpePa P = 1 , .  . . 6  (24) 

haa=~, (~ , -G" , ,a ) - t" ,GOg,a -mtm2m; ' .  

(Au(Pa - Po)) = 0 a = 1,6 (25) 

(AU(P1 - Pd) = 0. (26) 

~ i - ~ s = ( e - ~ ) i ~ l + ( ~ u + ~ u ) ( d 0 , - ~ 6 ~ ~ .  (27) 

(PI - Pa) = e- e. 

a=l 

where the constants A: = F$ - mi 'mie ,  and matrix hpa has components 

Now we can write a self-consistent equation on a coherent cluster for two successive 
bonds (ea*) and (O-e,) with common cell r = 0 

and then take their combination 

An expression for (PI - P6) follows from equation (24), giving 

If there is no reaction, ie. r = 0 and hence tu = 0, then equation (25) is consistent 
with the equation of Bernasconi and Wiesmann [IO] 

The latter equation has a physical interpretation in terms of the conductivity of the 
lattice, asserting that the potential drop between cells el and e6 in the effective lattice 
is equal to the potential drop averaged over the values U of the coherent inclusion 
in the non-homogeneous lattice. In general, except for the condition for a flow 
through the cluster (see equation (26)), one can construct a condition for the total 
flow towards the central cell at T = 0 from all six neighbouring cells, ie. 

However, equation (29) yields a poor behaviour for B when applied to the case 
r + 0. It should be emphasized that for r > 0 equations (26) and (27) represent a 
correct condition for B, but equation (28) does not, as would seem to be so from the 
above interpretation. 

(28) 

(Au(6P, - S) )  = 0. (29) 

We therefore arrive at a self-consistent equation for z 
(1 - p2)F 

1 t (r - B- q(em - q6) - = 0. (30) pZ( 1 - F )  
1 + (I -5- q(Pw - q6) 

As for its properties, the following ones can be immediately stated. First, if cb -+ 0, 
ie. p + 1, equation (30) yields 5 + 1 for every value of r. Secondly, if r = 0, then 
B = 0 (this equality will be proved in section 4.5) and equation (30) coincides with 
the selfconsistent equation (28). Thirdly, if I' = 1 then the denominators in both 
terms in equation (30) are equal and 

solves equation (30). Fourthly, if I? B 1 then B = 1 represents a solution to equation 
(31). For other values of r, numerical analysis of equation (30) together with a 
self-consistent equation for 5 is amenable to find B. 

(31) 
- 
0 = p2 
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4.5. Explicit form for the self-consistent quation for B 

'Ib calculate B, we make use of equation (14b) and take a linear combination of 
(CUP,) and (COS) in such a manner as to provide the Smoluchowski kinetics for 
V(q,) in the limit as cb + 0. 'Ib this end, we impose the following condition: 

(b(6Po + SI) = 0. (32) 

Hence, a self-consistent equation for B is obtained by substituting into equation (32) 
the expressions for Po and S from equation pl), so 

(33) 
( w / 6 +  Ti+B)?-'(m, + 6m2) - m1 + m3 = o. 

(€0 M ) 
In accordance with the choice of the coherent cluster, the averaging in equation 
(33) encompasses two configurations of the Poisson distribution. With probability pz 
configuration A is realized, for which 

a = l  A , = l - - B  ie. e, = o E, = -5 

and with probabiliry (1 - p2) configuration B is formed, for which 

a = O  A, = -a 
e, = 1 ie. E, = r - 8' 

We restrict our analysis only to the static case, when w = 0. Regardless as to how 
{mi} are chosen, equation (33) shows that B = 0 is its solution when r = 0. Now, 
consider the case with local instantaneous reaction, r = 1, and a low concentration 
of solid phase of B, cb -+ 0. A slow adsorption of the A particles is expected 
to occur in those conditions. The property B -+ 0 as well as T -+ 1 results in a 
&ief contribution to coefficients {mi)  in equation (16). For configuration A, we 
have mu + 1, ml + 0, m2 + 0, m3 + 1, and the corresponding contribution to 
equation (33) is -2p% Again, to dominant order in cb for configuration B, the 
mriables {m$} are mu + 60,. ml + 6q,, m2 -+ -e,, m3 + Se,. and the 
corresponding contribution to equation (33) reads (1 - p2)/(6@,). Recalling the 
definition p = 1 - s3 we infer that in the low-concentration limit 

B = cb/(6eW). (35) 

For a = 0 and a = 1, the GF Cw in equation (35) is expressed via the Watson 
integral I, N 1.51, namely 6@, = I, [ll]. The total rate of adsorption of A 
particles in the kinetics equation (IO) is equal to Ben = 6, so 

Ba = 6cb / I,. 

This is nothing but the result by Montroll and Weiss for the rate of absorption with 
one centre of diffused particles on a regular lattice 1161, presenting the lattice version 
of the Smoluchowski theoly (17, and the one-site coherent potential approximation 
(CPA) result [ll] as well. Equation (3.5). considered as an equation for B for all cb 
and prescribed -B = I, yields a monotonically increasing solution versus concentration 
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%. so that B(q,) > 1 at cb > 0.5. Actually, for F = 1, the value B should not 
exceed unity, as this is the diffusion-controlled rate for transitions along one bond. 
By contrast, the duster approach with two possible configurations A and B on the one 
hand yields the (PA in the lowdensity limit, and on the other hand does not suffer 
from the aforementioned shortcoming as the density increases. Acceptable mots of 
equation (33) lie within the range 0 < F < r for 0 < + < 1; moreover, at r + 03, 
the rate B renormalizes, becoming much smaller than r. lb see this, we should bear 
in mind that F = 1 solves the self-consistent equation (30), so equation (33) is the 
only equation in hand. RI configuration A, A, = 0 and the variables { m i }  take 
on values mu = 1 - &ew, ml = 6X$,, mz = B q l ,  m3 = 1 - 6(1+ 7)G' 
Leading terms coming from configuration B are proportional to r, i.e. mo = 6 r 4 ;  
ml = 6r4 , mZ = -l?ql, m3 = Fgo, giving the following contribution to equation 
(33): (1 - p 1 )/(6C&). Thus, the self-consistent equation for B reduces to 

It is possible to find an analytical solution to equation (36) in the limit cb -* 0. Then, 
just as we had for the case with finite l', we expect that B -+ 0, so the expressions 
for { m i }  are simplified to mo -* 1, m,  -+ 0, mz -+ 0, m3 + 1, and 

B = cb/(6G&). (37) 

By equation (lo), the GF for the effective lattice, GI, with F = 1, 77 -+ 0 is connected 
with I,, leaving the final result 

F = q,/( I, - 1). (38) 

5. Discussion of numerical results 

R r  arbitrary parameter r and concentrations cb, we seek a solution to equations 
(30) and (33) numerically. The needed Green functions are provided in the appendix. 
Referring to figure 2, we see that, at fixed concentration cb. the effective diffusion 
rate F ( r )  increases with r. The cause of this behaviour is the percolation cluster 
totally reflecting the particles of A when r = 0. This means that in the proximity of 
the cluster, the flow of A particles equals zero. When r is increased, the reflecting 
property of the cluster is replaced with an adsorbing one, providing a flow at the 
border of the duster. A part of this flow will be adsorbed, giving augmentation of the 
aggregate, and the other part leaks through the solid B structure causing penetration. 
The case r -+ 03 yields T = 1 overall, except at cb = 1. A large diffUsion rate is due 
to surviving particles of A that do not 'know' their fate and have unit diffusion rate. 

The fust thing that happens when looking at figure 3 is a quick rise in F at small 
values of cb. Given a value of the parameter r, the rate curve B(c~)  at a very low 
concentration c, starts out from zero with slope 
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and behaves as in gas-phase reactions. As the concentration increases, the 
enhancement of B( cb) for larger I' is obsetved. The effect increases with the value of 
P, and at r N 2, the function B(cb) undergoes considerable derivative dV/dcb, at a 
critical concentration c;(r); see figure 4. In the language of phase transition theoly, 
this could be called a bt-order  transition. A sharp increase in B shows that some 
structural transition in the solid phase occurs, to become linked and ramified in order 
to provide, for a small value of 4, a large rate of adsorption in comparison with the 
rate of effective diffusion. There is no reason to suppose that this effect disappears 
if more accurate statistics f ( 0 )  are involved or different lattices are considered. 

con-.tnuob 

Figure 3. lhe effective me ol deposition of A particles, T, as a function of concentration 
of solid phase of B for the ~t of values of the parameter r a8 m figurc 7, except tor 
r = 0: (1) ai, 0) 1, 0) IO, (4) IW, (5) 1m. 

It s eem plausible to assume that the observed behaviour in V(cb) is connected 
with spanning clusters since the sharp increase in B ( q , )  resembles the observed 
behaviour in the P,(c) near the percolation threshold [18]. The effective-medium 
approximation provides no means to gain information about inherent fluctuations in 
the geometrical shape of the aggregate, except for averaged or smoothed structure, 
with the concentration c; being the only quantitative measure of the structure. 

As we go to r --* 03, the rate ii(cb) renormalizes, becoming independent of I?. 
The corresponding curves for different r and small cb are slightly displaced towards 
zero from each other without any substantial effect on the shape. 

6. Conclusion and summary 

The condition 5 = 0 in the models with pure diffusion [6,8] is known to indicate 
the existence of the percolation structure. The effect observed in this paper can be 
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O O l l c a h U O i o n  

F@re 4 me effective late of deposition of A panicles, i?* as a hnnion of mncentration 
d solid phase of B for different values of the parameter r: (1) 0.5, (2) 1, (3) 1.4, (4) 
1.8, (5) 2, (6) 22, (7) 24. The rate, T, jumps almost discontinuously for r E 2 

thought of as a chemical analogue for the geometrical phase transition occurring in 
an ensemble with chemically active particles. A sharp increase in the effective rate 
of adsorption is likely to be a manifestation of the formation of structures somewhat 
similar to the fractal DLA Structures observed in computer simulations [2,3]. 

'Ib describe this effect, a model has been formulated, viz. equation (9) with r > 1. 
The effective rate 5(cb) is shown to exhibit a critical behaviour when 

r > r* 2. (40) 

For small r, the dependence T(cb) is rather smooth, but when r approaches r', 
the dependence of T on cb becomes more and more sharp, so that for r above r', 
E(%) jumps almost discontinuously at the critical mncentration c;(I'). This state is 
critical in the sense of lirst-order phase transitions. The ct;(r) shifts towards zero 
with increasing r, becoming c;(m) Y 0.016. That is, all incoming flow of particles is 
adsorbed when the solid phase occupies about 1.5% of the whole volume. As in the 
case of the percolation problem, the other properties of the internal structure of the 
adsorbate, except the critical concentration, are not known within the m. 

It is by no means certain that the EMT can be taken for granted, despite the fact 
that the observed structures occur at the low-concentration Limit where the EMT is 
likely to be valid [6]. The main question addressed here is, why does the proposed 
theory show a sharp increase in the function T ( c b )  at such small  lues of q,? A 
more subtle theory than the small-cluster selfconsistent one is required to describe 
the occurrence of ramified structures. Our point of view can only be justified by 
the utility of the effective-medium approaches in the theory of first-order phase 
transitions, both for equilibrium and for percolating systems, where the large-cluster 
problem is also ignored due to its unacceptable labour. 
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The second fortunate feature of this paper b in exploring transport coefficients 
T and 5 for the model with r < 1. The effective-medium formalism provides an 
alternative tool for calculating the concentration dependence of the effective rates 
of local reaction, when r < 1, along with the formalism in [19]. The self-consistent 
equations relative to effective diffusion coefficient, F, and effective chemical rate, T ,  
present a transcendental algebraic equation, which has been solved analytically in the 
case % -+ 0. A lattice version of the Smoluchomki result is reproduced at r = 1 
and cb -+ 0 as well as judicious behaviour of T that becomes less than unity. In this 
respect, the cluster approach improves the concentration dependence of the one-site 
CPA model [ll]. Though the calculations have been done for the zero-frequency limit, 
w = 0, to get a temporal dependence of ii is also possible.. 

Thus far, the model has been restricted to the situation with fixed concentration 
of the B particles, the so-called quasi-stationary approximation. It b important 
also to enquire about the deposition process when the rates inherit their temporary 
dependence on time from the concentration cb. So, we should turn to quation ( 5 ~ )  
and write, on averaging, the rate of change cb,j = (mb,j) as 

at%,j = d,c.,j xiij+e =daca, j (A5j  + G j )  (41) 

where c, . = (ma,j), A is the three-dimensional Laplacian and the second form of 
the quaiion helps to reveal its basic properties such as the diffusional spreading 
of B particles and their growth. In addition, equation (41) has been generalized to 
non-uniform making use of the arguments of section 4.1, ie. Cj = i i ( ~ ~ , ~ ) .  Within 
this context, the concentration of A particles is Seen to play a role analogous to that 
of the diffusion coefficient In what follows, a non-uniform profile in c,,~ induces 
instability in the growth of the solid phase, i.e. places of the B phase with a small 
caf, being far from the source of A particles, have a small rate of motion, and places 
near to the source move more rapidly. As a result, the structure can grow into a set 
of fingers which are pores themselves. Incidentally, the instability can be suppressed 
by making the profile more or less uniform. This happens in models with ballistic 
motion of A particles, when the convective flow is proportional to the concentration 

(not gradient of the concentration) and c,,~, is practically spatially uniform. This 
fact is in qualitative agreement with the simulation of ballistic deposition [20], where 
the thickness l1I3 (for the three- 
dimensional case) in comparison with larger thickness € = I in the diffusion-limited 
mode [ZO]. 

In conclusion, we note that the dependence E ( r )  can be observed in 
electrochemical experiments that are known to be sensitive to the morphology of 
the deposits [21]. 
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is found to scale with aggregate average size as € 

Appendix 

Here, the Green functions on a simple cubic lattice will be presented in a form that 
provides a minimum cost in numerical calculations. Let us Write the expression for 
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the GF as the Fourier integral (w = 0) 

Here, a dimensionless variable + = ii/T is introduced. The integral over two 
variables, for instance d+2 and d&, can be done by hand 1221, so that 

where K ( z )  is the total elliptic integral of the first kind [U]. Note that JQ(0) = Iw/6, 
where Iw N 1.51 is the Watson integral, and J,,(I+~) + l/$ at $ + 00, because 
X(0)  = ~ / 2 .  The GF q1 can be conveniently expressed as ql = JL/z?, where 
J1($) is related to J,($)  by equation (lo), Le. J1 = J,- (1- +JQ)/6 .  Analogously, 
an expression for @, - q6 can be reduced to a one-dimensional integral 

- G6 = J 2 / B  

as 

In terms of variables + and 5, equation (30) represents a quadratic equation relative 
to T. On substituting its solution z? = a($) into equation (33), we obtain an 
algebraic transcendental equation relative to variable +. The function M(+,z? (+) )  
in equation (33) has zeros in the range 0 < $ < r, so one should lind a wmmon 
denominator, to seek a solution to equation (33) as a root of the numerator of the 
resultant fraction. 
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